Теплопроводность пеноблока: коэффициент теплопроводности пенобетона

Как теплопроводность пенобетона сравнить с коэффициентом теплопередачи силикатного кирпича

Теплопроводность пенобетона – один из основных показателей, влияющих на стремительное повышение интереса к данному материалу. Наряду с небольшим весом и значительными габаритами, идеальной геометрией и другими особенностями, существенно упрощающими и удешевляющими процесс строительства, теплоизоляционные характеристики пенобетона делают его одним из самых популярных материалов.

Коэффициент теплопроводности пенобетона может быть разным и зависит от числа, величины пор внутри ячеистого материала, уровня плотности. Марки с самыми высокими теплоизоляционными характеристиками демонстрируют невысокую прочность, материал с большой теплопроводностью способен выдерживать большие нагрузки. И часто главная задача при выборе марки пеноблока – сохранение баланса: оптимального уровня прочности и высокого теплосбережения.

По мере повышения коэффициента теплопроводности ухудшаются теплоизоляционные свойства материала: это значит, что зимой тепло будет уходить из дома быстро, а летом конструкция станет стремительно нагреваться. Пенобетон изготавливают из цемента, песка, воды и специального пенообразователя. Вещество вспенивает смесь, благодаря чему в структуре материала появляются воздушные поры закрытого типа. В них находится воздух, который сохраняет тепло.

Чем больше пор – тем более высокие характеристики теплоизоляции, но тем менее плотный и более хрупкий материал. Показатель теплопроводности меняется от марки к марке (у D100 минимальный, у D1200 – максимальный). Но в общем, если сравнивать пенобетон и другие строительные материалы (кирпич обычный или силикатный, бетон), ячеистый бетон значительно превосходит показатели остальных вариантов, немного уступая лишь дереву.

Виды пеноблоков

Пенобетон производят по единой технологии путем смешивания основных компонентов, разливки смеси в формы, сушки под давлением и высокой температурой в автоклаве, дальнейшей нарезки и складирования. Производство осуществляется по единой технологии, но вот состав раствора для заливки может быть разным. Чем меньше пенообразователя добавлено в смесь, тем более плотным и прочным, тяжелым получится материал.

Но за счет уменьшенного числа пор способность сохранять тепло у такого материала понижается пропорционально уменьшению количества пустот в структуре. По уровню плотности (а значит, и весу, прочности, теплопроводности) пенобетон делят на три основных категории – для теплоизоляции, строительства и комбинированный тип.

Основные виды пенобетонных блоков:

  1. Конструкционные (марки D900-1200) – плотность и вес, прочность максимальные за счет малого количества пор в структуре, можно использовать материал для кладки фундамента, создания цокольных этажей, несущих конструкций. Теплопроводность самая высокая, в диапазоне 0.29-0.38 Вт/м*К. Блоки предполагают обязательное проведение мероприятий по теплоизоляции.

  1. Конструкционно-теплоизоляционные (марки D500-800) – блоки демонстрируют средние показатели теплопроводности, плотности, прочности. Используются для кладки несущих стен, внутренних перегородок. Самый популярный материал на рынке, который чаще всего применяется в строительстве, особенно жилых зданий. Способность сохранять тепло средняя – теплопроводность в диапазоне от 0.15 до 0.29 Вт/м*К.
  2. Теплоизоляционные (марки D100-400) – применяются исключительно с целью утепления, наименее плотные и прочные, с самым небольшим значением теплопроводности (показатель на уровне 0.09-0.12 Вт/м*К). В структуре материала содержится максимальное число ячеек с воздухом. Строить здания и класть стены из материала нельзя, он выступает только теплоизоляционным слоем.

Зависимость сопротивления теплопередаче от плотности бетона

Воздух – эффективный натуральный теплоизоляционный материал. За счет того, что структура пеноблоков пористая, они хорошо сохраняют тепло и демонстрируют невысокий показатель теплопроводности (если сравнивать с другими строительными материалами). Так, значение намного ниже, чем у бетона или кирпича.

Обычным пользователям значения теплопроводности не говорят ни о чем, поэтому сравнить строительные материалы можно в таком примере: для получения стены, способной демонстрировать показатель теплопроводности на уровне 0.18 Вт/м*К, нужно применить пеноблоки марки D700 величиной 600х300х200 миллиметров. Для получения аналогичного значения при строительстве из шлакоблоков толщина стены должна быть минимум 108 сантиметров, из кирпича – около 140 сантиметров.

Коэффициент теплопроводности меняется от марки к марке и напрямую влияет на плотность/прочность материала. Блоки с минимальной прочностью и небольшим весом используют для выполнения мероприятий по теплоизоляции, подходят они для строительства межкомнатных перегородок, на которые будут воздействовать минимальные нагрузки. Плотность таких блоков должна быть на уровне 400-500 кг/м3.

Пенобетон с высоким показателем плотности (в районе 1000-1200 кг/м3) за счет уменьшенного размера и числа ячеек в структуре более плотный и прочный, но теплопередача выше. Такой материал используют для возведения несущих стен малоэтажных зданий. Средней плотности пеноблоки (в районе 600-700 кг/м3) демонстрируют свойства на среднем уровне: могут выдерживать оптимальные нагрузки и достаточно теплостойкие.

Расчет теплопроводности стен из пенобетона

Выполняя расчеты перед строительством здания, очень важно учитывать уровень теплопроводности, который влияет на выбор пеноблоков, а также поиск оптимальной толщины стены, возведенной из материала. Сначала определяются с вариантом выполнения стен: это могут быть кирпич/блок/штукатурка или блок, покрытый штукатуркой с обеих сторон.

Для выполнения расчетов нужно знать показатель коэффициента теплопередачи выбранных материалов, которые используются для строительства стены. Так, кирпич демонстрирует значение 0.56, штукатурка на уровне 0.58, блоки могут давать разные значения в зависимости от марки (обязательно нужно смотреть в таблице). Также важно учитывать коэффициент сопротивления стен теплопередаче – средний показатель обычно равен 3.5.

От общего значения 3.5 отнимают показатель сопротивления теплопередаче слоя штукатурки в 2 сантиметра (0.02/0.58=0.03), 12 сантиметров кирпича (0.12/0.56=0.21), если выбран первый вариант, либо 4 сантиметра штукатурки (0.04/0.58=0.06), если выбран второй вариант создания стен.

В первом варианте (если применяется кирпич) стена из пенобетона должна обеспечить показатель сопротивления теплопередаче на уровне 3.26. Так, если для строительства выбран пеноблок марки D600, толщина стены должна быть 45.6 сантиметра (3.26х0.14=456 миллиметров), если D800 – толщина стены нужна 68.4 сантиметра (3.26х0.21=684 миллиметра). Сделать стены тоньше и добиться нужных значений можно с использованием теплоизоляционных материалов.

Что учитывают при выборе пенобетона:

  • Оптимальная марка – обозначается индексом D, означает плотность, вес, прочность, теплопроводность. Чем выше марка, тем больше прочность/плотность, теплопроводность и вес.
  • Толщина стены – высчитывают в каждом случае отдельно, с учетом используемых материалов, теплоизоляции и других аспектов.
  • Качество пенобетона – материал лучше выбирать автоклавный, созданный в условиях завода, с применением специального оборудования, проверкой качества, выдачей сертификатов и гарантией соответствия всем указанным характеристикам.

Теплопроводность пенобетона – один из ключевых показателей, который обязательно нужно учитывать при выборе материала и составлении проекта будущего строения, выполнении расчетов, планировании всех этапов строительства.

Теплопроводность разных видов пеноблока

Теплопроводность пеноблока – значимая характеристика стройматериала. Способность проводить тепло связана с обратной пропорциональной зависимостью с прочными показателями пенобетона. Эта характеристика показывает, какое количество тепла передает материал за определенное время. Также влияние оказывает величина плотности стройматериала и влажность.

Теплопроводные качества различных марок пеноблоков значительно отличаются, из-за разной структуры. Блоки производят трех видов:

  • конструкционные – самые плотные и содержат маленькое количество ячеек с воздухом. Понадобится теплоизоляция пеноблока;
  • теплоизоляционные – имеют наилучший коэффициент теплопроводности, но из-за множества пустых пор с воздухом прочность значительно снижена;
  • конструкционно-теплоизоляционные.

Зависимость теплопроводности от плотности

Воздух является эффективным природным теплоизоляционным материалом. Пеноблоки имеют ячеистую структуру, благодаря которой этот блочный строительный материал обладает низким коэффициентом теплопроводности. Показатель намного ниже, чем у бетона или кирпича и равен 0.08 Вт/мС. Для рядовых пользователей, эти показатели ни о чем не говорят, поэтому приведем такой сравнительный пример. Чтобы получить стену, которая будет иметь показатель теплопроводности 0.18 Вт/м0 С, понадобятся пенобетонные блоки марки D700 (размеры 588х300х188).Чтобы добиться таких же показателей теплопроводности для шлакоблоков понадобится сделать толщину стены 108 см, а для красного кирпича 140 см.

Важно! Когда рассчитывается коэффициент теплопереноса, необходимо учитывать плотность, которая обозначается буквой D. Например, маркировка D 900 означает, что 1 кубометр пенобетонных блоков весит 900 кг.

Коэффициент теплопроводности пенобетона изменяется в зависимости от плотности и прочности материала. Самые легкие с меньшей прочностью блоки применяют для теплоизоляции стены здания и постройки межкомнатных перегородок. Для этого подходят блоки с плотностью 400-500 кг/м3. Производится пенобетон с высокой плотностью – 1000-1200 кг/м3. Благодаря уменьшению размера ячеек внутри блоков структура становится более плотной. Такой стройматериал подходит для постройки несущих стен 1-2 этажных зданий, но хуже сохраняет тепло. Пеноблоки средней плотности 600-700 кг/м3 теплостойкие и способны выдержать нагрузку перекрытий.

Расчет теплопроводности

Чтобы здание имело требуемые качества теплопроводности пенобетона, блоки разной плотности следует укладывать на различную толщину. Первым делом рекомендуется определить такой важный момент, при помощи, какого варианта будет производиться постройка стен. Не редко применяют такие способы – кирпич-блок-штукатурка либо оштукатуренная с двух сторон блок стена.

Для правильного расчета нужно знать коэффициент теплопроводности пеноблока и показатели теплоотдачи прочих строительных материалов, которые войдут в состав стены.

Пенобетонные блоки обладают разной теплопроводность для определенных условий эксплуатации. В таблице указаны величины ватт на метр на градус Цельсия.

Вид материалаМарка (средняя плотность)Коэффициент теплопроводности Вт/м°С
На пескеНа золе
Теплоизоляционный пеноблокD 3000.080.08
D 4000.100.09
D 5000.120.12
Конструкционно-теплоизоляционный пеноблокD 5000.120.12
D 6000.140.13
D 7000.180.15
D 8000.210.18
D 9000.240.20
Конструкционный пеноблокD 10000.290.23
D 11000.340.26
D 12000.380.29
Штукатурка058
Кирпич0.56

Средний показатель коэффициента сопротивления стен теплопередаче равен 3,5. Из общего значения 3.5 вычитается показатель сопротивления теплопередаче 20 мм штукатурки – 0.02 : 0.58 = 0.03 и 120 мм кирпича – 0.12 : 0.56 = 0.21 для первого случая. Либо 4 см штукатурного слоя 0.04 : 0.58 = 0.06 для второго варианта исполнения.

В первом варианте при использовании кирпичей, бетонная поверхность обеспечивает сопротивление теплопередаче с показателем 3.26. Если используется марка блоков D 600, толщина составит 45.6 см (2.26*0.14 = 456). При использовании D 800 рекомендуется выкладывать стену толщиной не меньше 68, 4 см (3.26*0.21=684). По аналогичной формуле рассчитываются стены с применением любого вида ячеистого бетона.

Вариант с оштукатуренной с двух сторон стены из показателя 3.5 следует отнять 0.06 – 4 см штукатурки. Дальше производятся расчеты для требуемой марки бетона в согласии с показаниями в таблице.

При выборе пенобетона для теплоизоляции учитываются такие аспекты:

  1. Марку материала. Линейка производителей предлагают блоки, которые обладают прочностью и теплоизоляцией.
  2. Размеры блоков или панелей и необходимый слой для утепления.
Читайте также:  Бетон М550: применение, технические характеристики, плотность

Пенобетон имеет замечательные характеристики и теплопроводность, он удерживает тепло и является экологически чистым материалом, как дерево. Для производства материала используют цемент, песок, воду и натуральный пенообразующий компонент. В доме, построенном из него, будет комфортно и тепло.

Что такое теплопроводность пеноблока: какой бывает и как правильно рассчитать?

Одним из часто используемых стройматериалов в массовом строительстве является пенобетон, который производят из песочно-цементной смеси, воды и вспучивающего агента — пенообразователя.

Структура пеноблоков, состоящая из бесчисленного количества пор, обеспечивает главные технологические характеристики этого стройматериала: плотность, прочность, длительный срок службы, морозоустойчивость (в микропорах жидкость не замерзает даже в сильный мороз), экологичность, невысокий вес, термоустойчивость, влагопрочность (не впитывает влагу).

А такая характеристика пенобетона как теплопроводимость, помогает значительно снизить стоимость строительства.

Что означает это понятие?

Термином теплопроводность обозначают способность строительных блоков удерживать константную температуру и транспортировать тепло. Таким образом, дом, выстроенный из разных материалов может с разной скоростью накапливать и отдавать тепло из атмосферного воздуха. На эту способность существенно влияет показатель теплосохранения.

Эта важнейшая характеристика пенных блоков влияет на область и географию применения стройматериала, его основные свойства.

Противоположностью теплопроводимости является сопротивление теплоотдаче, которое определяет объем тепла, выделяемого одним кв.метром стеновой (фасадной) поверхности условной толщиной 1 метр при перепаде внешних и внутренних температур на один градус Цельсия.

Значения теплопроводности для большинства строительных материалов указаны в специальных справочниках СНИПах (один из них СНиП II-А.7-71). У пенобетона он очень низкий, что и делает его таким популярным.

От чего зависит?

Теплопроводность пенобетонных блоков определяется внутренним строением- чем более насыщено оно пустотами, тем выше будет номинал показателя.

Более или менее пористая структура стройматериала формируется в зависимости от его плотности, при этом с повышением данной характеристики теплоизоляционные возможности блоков падают (поскольку пустого пространства внутри стройматериала становится меньше).

Также теплопроводность напрямую связана с числовыми характеристиками прочности пенных блоков.

В период планирования стройки для расчета тепловой проводности необходимо знать значения таких показателей:

  • теплотехнические параметры;
  • сопротивление тепловой передаче всего сооружения;
  • сниповский норматив градусосуток региона стройки.

Виды пенобетонных блоков по тепловой проводимости

В зависимости от плотностных значений, пеноблоки объединяются в три подгруппы:

  • теплоизоляционные (марки от Д300 до Д500);
  • конструкционные (марки от Д900 до Д1200);
  • конструкционно-теплоизоляционные (марки от Д600 до Д800).

Дополнительная информация. Д — обозначение плотности материала в кг/кубометр.

Вспененный бетон первого типа имеет проводимость тепла от 0,08 до 0,12, Вт*м* град.С. Изделия этих марок служат только для тепловой изоляции сооружений (в качестве дополнительного слоя для изоляционного контура стен), поскольку имеют наиболее пористую структуру из всех видов блоков.

Второй вид пенобетонов — конструкционный — обладает теплопроводностью диапазоне от 0,24 до 0,38 Вт*м* град.С.

Они отличаются слабой способностью сохранять тепловую энергию, но при этом являются очень прочным материалом, а также обладают повышенным пределом сжатия.

Благодаря таким свойствам, конструкционные блоки применяются чаще для возведения многоэтажных построек, фундаментов и несущих стен и перегородок, подполья, подземных гаражных боксов. Для того, чтобы максимально увеличить прочность, блоки можно армировать фибровым волокном.

Третий вид пенобетоновых блоков характеризуется средними значениями показателя теплопроводности — он варьируется от 0,11 до 0,18 Вт*м* град.С., а также обладает неплохими теплоизоляционными свойствами. Место его использования — ограждения несущего характера.

Требования для разных стен

По стандартам и нормативам внешнее теплосопротивление постройки (включая отделку) не должно быть менее 3,5 Вт*м* град. С, исходя их этого показателя высчитывают и нужную толщину возводимых из пеноблоков сооружений.

Несущих наружных и внутренних

Для несущих стен сооружений не выше трех этажей, необходимы пеноблоки с плотностью на уровне 800 кг/м³ (конструкционно-теплоизоляционные). Они способны держать вес перекрытия из бетона или монолита, однако для повышения предела прочности желательно их армировать. Если же перекрывать планируется деревом, усиливать пенобетонные блоки не требуется.

Для несущих стен многоэтажных построек применяют конструкционный пенобетон, поскольку они обладают повышенной прочностью и пределом сжимания (что очень важно для высотных домов).

Стандарт по размерам для такого стройматериала это:

  • 0,6 х 0,3 х 0,2 м — для внутренних несущих стеновых перегородок;
  • 0,6 х 0,4 х 0,2 м — для наружного несущего стенового периметра.

Ненесущих перегородок

Такие элементы в строительстве призваны разграничивать площади комнат. Ее толщина зависит от размеров получающихся помещений и их назначения.

Нормативы ГОСТа к толщине стройматериала для перегородок и простенков составляют от 5 до 10 см.

Помимо разграничительной нагрузки перегородки должны помогать сберегать тепло в помещениях, поэтому необходим пониженный уровень теплопроводимости, чему полностью отвечает теплоизоляционный вид пенного бетона.

Все подробности кладки перегородок из пеноблоков вы можете найти в отдельном материале.

Как рассчитать необходимую толщину стен?

Всем трем подгруппам пеноблочного стройматериала присвоены значения теплопроводности, используя их, можно рассчитать нужную толщину камней для выкладки стены.

Для этого используется прописанный в строительных нормативах номинал сопротивления теплопередаче стенового каркаса в D =3,5 град.С*кв.м./Вт, а также вычисляются показатели теплового сопротивления каждого слоя. Далее по формуле рассчитывается нужная толщина стенки для пенобетонных блоков разной плотности:

Х = (D — D1 — D2)* λ, где

Х — толщина блоков;
D1-d1 – сопротивление теплопередаче слоев стены;
λ — коэффициент теплопроводимости пенобетона.

Например, если стена планируется 3-слойная: облицовочный кирпич, пенобетон, декоративная штукатурка, то:

    Для блоков Д600 значение Х будет находиться так:

х = (3,5 — 0,21 (сопротивление теплоотдаче для кирпича) — 0,03 (сопротивление тепловой отдаче для оштукатуренных поверхностей)) * 0,14 (табличный коэффициент теплопроводности для пенобетона данной плотности) = 45 см.

Для блоков Д800 значение Х будет равно:

х = (3,5 — 0,21 — 0,03) * 0,21 = 68 см.

Для блоков Д1000 значение Х будет равно:

х = (3,5 — 0,21 — 0,03) * 0,29 = 94 см.

Тепловое сопротивление материалов определяется с ориентацией на нагрев до плюс сорока градусов C. Таким образом, чем выше плотность пенобетонных камней, тем толще должны быть стены, и, соответственно, затраты на стройку и тепловую защиту.

Более подробно о том, каковы требования к толщине стен из пеноблока и как правильно её рассчитать, можно узнать здесь.

Последствия неправильного выбора показателя

В случае, если приобретены пенные блоки с неверно подобранным значением теплопроводности, точка росы на фронтальных стенах уйдет вовнутрь периметра.

Тогда материал начнет промерзать, что спровоцирует развитие плесневого и грибкового поражения внутри помещения.

Если используемые вспененные блоки будут слишком толстыми, это никак не испортит микроклимата в комнатах, но приведет к излишним затратам на материалы и работу по их монтажу.

Заключение

Теплопроводностью считают способность строительных материалов пропускать теплоэнергию через себя. По величине данного показателя выделяются три вида пенобетонных блоков: изоляционные, конструкционные и конструкционно-теплоизоляционные.

Каждый из этих видов имеет свои характеристики, которые ограничивают область их использования. Важно перед стартом стройки изучить их особенности для верного определения толщины стены. Это поможет создать в доме хорошую защиту от шумов и комфортные микроклиматические условия, а также избежать промерзания здания, а также излишних растрат на стройматериалы.

Характеристики теплопроводности пенобетона

  • Сфера применения
  • Технология изготовления пенобетона
  • Основные характеристики ячеистого бетона
  • Теплопроводность
  • Прочность на сжатие
  • Достоинства и недостатки пенобетона

Не будет большим преувеличением утверждение, что в современных условиях использование пенобетона считается преобладающим в индивидуальном строительстве. И востребованность этого относительно нового для отечественного рынка строительного материала обусловлена не только фактором стоимости. Его технические характеристики по многим параметрам оказались намного лучше традиционного кирпича и классического бетона/железобетона.

Правда, если говорить исключительно о цене, то доступность данного стройматериала стала возможной благодаря появлению новых технологий его изготовления. В действительности он известен более столетия, но до недавнего времени пенобетон был непопулярен именно по причине недоступной стоимости.

Сфера применения

На западе пенобетон активно используется на протяжении нескольких десятилетий, у нас же он появился сравнительно недавно, но уже успел приобрести отличную репутацию как достойная альтернатива классическим стройматериалам. Единственным значимым недостатком можно считать меньшую прочность, поэтому в многоэтажном строительстве бетон и кирпич остаются вне конкуренции.

Рекомендуется применять пенобетон при строительстве дома не выше двух этажей

Применение комбинации «бетонный каркас + пеноблоки» предоставляет возможность возводить здания высотой более двух этажей, но такой вариант встречается редко. Основная же сфера использования пенобетона – малоэтажное строительство: дома, гаражи, подсобные помещения, здания коммерческого и промышленного назначения.

Технология изготовления пенобетона

Представляя собой ячеистую разновидность классического бетона, этот стройматериал изготавливается из следующих компонентов:

  • цемента;
  • воды;
  • песка;
  • синтетического пенообразователя;
  • добавок, улучшающих эксплуатационные свойства материала.

В настоящее время используется три технологии изготовления пенобетона.

Классический метод предполагает подачу пены в цементный раствор с помощью специального устройства – пеногенератора. Полученная смесь тщательно перемешивается, затем для затвердевания помещается в специальную камеру, обеспечивающую заданную температуру. На выходе получается ячеистый бетон, который считается наиболее качественным, надежным, долговечным.

Для создания пенобетона в домашних условиях, вам придется сильно потратится на необходимое оборудование, а так же это займет не мало времени

При использовании метода сухой минерализации пена добавляется в сухую смесь, и только после тщательного размешивания вводится вода в нужных пропорциях. Обычно такой способ применяется при непрерывном производстве. Ячеистый бетон, полученный таким способом, отличается большей прочностью, но характеристики теплопроводности уступают.

Метод баротехнологии характерен тем, что пенообразователь сначала смешивается с водой, и только потом в полученную смесь добавляют остальные компоненты. Чтобы получить пеноблоки приемлемого качества, используют барокамеры, которые обеспечивают процесс смешивания при избыточном давлении. Процесс затвердения не требует нагрева, но в целом длится намного дольше, при этом не исключена усадка и даже растрескивание материала.

Независимо от используемого метода изготовления каждый отдельный блок характеризуется замкнутой структурой воздушных пор, что и обеспечивает его прекрасные теплоизоляционные свойства.

Основные характеристики ячеистого бетона

В зависимости от плотности различают следующие марки пенобетона:

  • Теплоизоляционный ячеистый бетон представлен марками D300-D500. Невысокая плотность (порядка 300-500 кг/кубический метр) обеспечивает блоки стандартных размеров небольшой массой (12-19 кг) и низкой теплопроводностью. Поскольку прочность таких пеноблоков невысока, они используются исключительно для формирования теплоизоляционного слоя;
Читайте также:  Пескобетон Axton: строительная смесь для изготовления бетона

Таблица сравнения пенобетона с остальными материалами

  • Конструкционно-теплоизоляционный пенобетон (марки D600-800), обладая соответствующей плотностью и весом блока в пределах 25-35 кг, характеризуется оптимальным соотношением прочности-теплопроводности, поэтому именно эта марка – преобладающая при ведении малоэтажного строительства;
  • Конструкционный ячеистый бетон – это блоки марок D900-1200, характеризующиеся весом 40-47 кг и плотностью 900-1200 кг/кубометр. Они в меру прочны и устойчивы к сжатию, поэтому (с определенными ограничениями) могут применяться при многоэтажном строительстве, требуя дополнительного слоя утепления;
  • Конструкционно-поризованные пеноблоки (марки D1300-1600) отличаются высокой прочностью, позволяющей возводить объекты неограниченной этажности, но в промышленных масштабах они не изготовляется.

Теплопроводность

Второй по значимости характеристикой стройматериала является его способность проводить тепло. При этом теплопроводность пенобетона связана обратно пропорциональной зависимостью с его прочностными показателями.

Воздух – эффективнейший природный теплоизоляционный материал. Присутствие в структуре пенобетонного блока большого количества заполненных воздухом пор позволило снизить его теплопроводность до уровня 0.08 Вт/м°С, что на порядок ниже, чем у бетона или кирпича.

Ключевым фактором при выборе материала есть – теплопроводность

Для рядового пользователя этот цифровой показатель мало о чем говорит, поэтому приведем сравнительные характеристики пенобетона, керамического кирпича и шлакоблоков: чтобы получить стену, имеющую теплопроводность порядка 0.18 Вт/м°С, необходим слой пенобетона марки D700 толщиной 300 мм. Для шлакоблоков толщина стены составит уже 1080 мм, для красного кирпича – 1400 мм.

Прочность на сжатие

Прочностные характеристики оказывают непосредственное влияние на сферу применения ячеистого бетона. Если теплоизоляционные марки пенобетона, обладая невысокой прочностью на сжатие и низкой теплопроводностью, используются только в качестве теплоизоляционного слоя, то конструкционно-теплоизоляционные блоки отличаются достаточной прочностью, чтобы выдерживать плиты и балки перекрытия малоэтажных строений, а конструкционные можно использовать при возведении многоэтажных зданий.

Сравнительная таблица различных марок пенобетона

Прочность на сжатие марок пеноблоков (кг/кв. см):

  • D400 – 9;
  • D500 – 13;
  • D600 – 16;
  • D700 – 24;
  • D800 – 27;
  • D900 – 35;
  • D1000 – 50;
  • D1100 – 64;
  • D1200 – 90.

Не менее важным свойством ячеистого бетона считается наличие внутренних пустот и точность соблюдения геометрических размеров блоков. От последнего параметра зависит расход кладочного раствора: при использовании неровных блоков толщину шва приходится увеличивать с 3 до 10 мм, что приводит к появлению «мостиков холода» и снижению энергоэффективности конструкции.

Достоинства и недостатки пенобетона

Как и любой другой строительный материал, ячеистый бетон нельзя назвать универсальным. Тем не менее, перечень его достоинств выглядит внушительно:

  • Долговечность. Срок службы здания, стены которого выстроены из блоков ячеистого бетона, составляет минимум 35 лет.

  • Теплоизоляционные свойства. Теплопроводность пеноблоков – порядка 0.08-0.20 Вт/м°С предоставляет возможность снизить теплопотери на 30% по сравнению с кирпичным зданием. При этом в жаркое время года такая стена не будет нагреваться, формируя внутри помещения микроклимат, сравнимый по комфортности с деревянным строением.
  • Экологичность, звукоизоляционные характеристики. Поскольку пеноблоки производятся из материалов естественного происхождения, они не гниют, не подвергаются воздействию грибков и плесени, уступая по экологичности только дереву. Звукоизоляционные свойства пенобетона также на высоте, позволяя обеспечить надежную защиту от любых внешних фоновых источников шума.
  • Простота монтажа. Габариты блоков и их малый вес существенно упрощают возведение зданий, снижая временные потери и трудозатраты. Пеноблоки легко поддаются механической обработке, что обеспечивает формирование конструкций любой формы.
  • Экономичность. Отличаясь малым весом и большими размерами, пеноблоки дешевле транспортировать, они требуют использования гораздо меньшего количества кладочного раствора.
  • Эстетичность. Пенобетон – прекрасный стройматериал для формирования разнообразных архитектурных элементов: арок, колонн, порталов. Благодаря большим размерам не требуется приложения больших усилий, чтобы добиться идеальной ровности стен, чего не скажешь о кирпичной кладке.

Единственным недостатком вспененного ячеистого бетона можно назвать его относительно невысокую прочность, что при малоэтажном строительстве не далеко не решающий фактор.

Теплопроводность пенобетона: за что отвечает данная характеристика?

Теплопроводность — одна из основных характеристик пенобетона, ведь она отвечает за способность материала к теплосохранению. Данный критерий является зачастую определяющим в отношении сферы применения материала и оценки его эксплуатационных качеств.

В данном обзоре мы будем анализировать то, что такое теплопроводность пенобетона, от чего она зависит и каковы ее значения.

Что представляет собой пенобетон

Давайте, для начала, кратко познакомимся с самим материалом, и разберемся в его основных свойствах, ведь коэффициент теплопроводности пенобетона неразрывно связан со многими значениями иных характеристик.

Пенобетон – пористый материал, являющийся представителем ячеистых бетонов. Состоит он из смеси песка, воды, цемента и пенообразователя, который вызывает вспучивание раствора — и, как следствие, образование ячеек.

Пористая структура во многом определяет основной набор свойств, который мы сейчас и рассмотрим.

Минимальное значение для неавтоклавного пенобетона составляет В0,5, а максимальное (для автоклавного) – В12,5.

В соответствии с требованием технической документации, минимальное значение должно составлять не менее 25 циклов, что касается исключительно материала, предназначенного для возведения наружных конструкций.

А вот, например, для теплоизоляционных изделий и перегородочных марка не установлена вовсе.

Также стоит сказать о том, что пенобетон имеет достаточно широкую классификацию. Материал разделяется на виды в зависимости от: типа кремнеземистого компонента, типа вяжущего, метода твердения, показателя плотности.

Пенобетон выпускается, как становится очевидным, не только в жидком виде, но и в форме различных изделий, которые обладают различными характеристиками и имеют разную область применения. Это — панели, блоки, плиты, перемычки и многое другое.

Что такое теплопроводность, и каковы ее значения у пенобетона

Теперь давайте перейдем непосредственно в основной теме нашей статьи. Итак, теплопроводность пенобетонных блоков и пенобетона в целом: на что влияет данное свойство?

Понятие теплопроводности, зависимость ее от иных характеристик

Теплопроводность – это способность материала к сохранению температуры. То есть, здание, возведенное из определенного конструктивного материала, может быстро или медленно остывать и нагреваться. Вот именно на это и влияет показатель теплосохранения.

Пенобетон может похвастать вполне конкурентными значениями, для изделий в сухом состоянии характерны показатели от 0,08 до 0,37 Вт*мС. В эксплуатационных условиях значение несколько повысится, но это касается не только пенобетона, но и любого другого материала.

Как уже упоминалось, способность к теплосохранению стоит в зависимости от плотностных показателей материала. Давайте рассмотрим более подробно.

  • Коэффициент теплопроводности пенобетонных блоков, предназначенных для теплоизоляции, составляет около 0,08-0,10 Вт*мС. Называют такие изделия теплоизоляционными. Марка плотности у них – Д300, Д400.

  • Если говорить про конструкционно-теплоизоляционный пенобетон, теплопроводность его – несколько выше, и составляет около 0,11-0,18 Вт*мС, а марка плотности варьируется в промежутке от Д500 до Д900.

  • Если вы используете конструкционные пенобетонные блоки, теплопроводность которых будет составлять вплоть до 0,35 Вт*мС, знайте, что в противовес слабой способности к сохранению тепла, такие изделия характеризуются повышенными прочностными значениями. А плотность их достигает 1200 кг/м3.

Помимо теплопроводности, с повышением плотности возрастает и морозостойкость изделий — и, как правило, их долговечность.

Сравнительный анализ теплопроводимости пенобетона и других материалов

А теперь пришло время сравнить теплопроводность изделий из пенобетона с показателями ее у других популярных материалов для строительства.

Блоки пенобетонные: теплопроводность изделий и сравнение ее значений с другими материалами:

Как видно, прямая зависимость плотности и теплопроводности касается не только пенобетона, но и любого другого материала. Если изделие преуспевает в показателе плотности, то в способности к теплосохранению оно будет существенно уступать.

Лидером в такой способности, несомненно, является полистиролбетон, однако конструкционные его возможности сильно ограничены в виде не столь высоких показателей прочности.

Методы повышения способности к теплосохранению, расчеты минимальной толщины стены

На два вышерассмотренных показателя можно оказывать воздействие. Если говорить конкретно про изделия, то плотность их и теплопроводность устанавливаются еще в процессе производства, о чем мы и поговорим ниже. Но для начала попробуем рассчитать, какая же толщина должна быть у стены, возведенной из пенобетона, при сохранении высоких характеристик к теплосохранению.

Рассчитываем толщину стены из пеноблока с учетом региона

Для расчета оптимальной толщины стены необходимо знать, так называемый, показатель сопротивления теплоотдаче. Он указан в СНиП и индивидуален для каждого отдельного региона. Усредненное значение равно 3,4, на него мы и будем опираться.

  • Предположим, что использовать при кладке мы будем блок, плотностью Д500 с коэффициентом теплопроводности 0,17 Вт*мС.
  • 3,4*0,17=0,578 м. Именно столько метров должна составлять толщина стены.
  • Так как утепление обычно производится, следует отнять значение его теплопроводности применяемого для него материала, и снова перемножить значения.
  • Допустим, что теплопроводность утеплителя составляет 0,02 Вт*мС.
  • 0,17-0,02=0,15. 0,15*0,34=0,51 м. Это значит, что при планировании утепления, толщина стен может не превышать 50 см. Если утепление сделать более интенсивным, то значение можно уменьшить до укладки одного блока, шириной в 400 мм.

Методы изменения коэффициента теплопроводности будущего материала на стадии производственного цикла

Все показатели будущего материала определяются еще на стадии производства:

  • Первым этапом станет составление рецептуры, а, точнее говоря, подбор состава. При начале выпуска производится определение номинального состава, чему предшествует составление специального задания, которое содержит все требования к будущим показателям.
  • После разработки замешивается смесь и производится своеобразный тест, по завершении которого, в случае, положительного результата, состав передается на производство. Если же итоги не соответствуют планируемым, то делается корректировка.
  • Все данные действия осуществляются, разумеется, при изготовлении материала в заводских условиях.
  • При производстве изделий своими руками, все пропорции сырья измеряются вручную, руководствуясь при этом лишь рекомендациями, так как точной рецептуры изготовления пенобетонной смеси не существует.
  • Именно поэтому при самостоятельном производстве не всегда удается получить необходимые показатели теплопроводности и плотности.

Обратите внимание! При изготовлении в домашних условиях пенобетона вы сможете значительно сократить бюджет на строительство, цена на блоки однозначно снизится. Единственным минусом являются большие трудозатраты, затраты времени и высокая вероятность несоответствия изделий требованиям ГОСТ.

Что именно влияет на изменение показателей?

  1. Тип кремнеземистого компонента;
  2. Соотношение цемента в составе: чем его больше, тем выше плотность и коэффициент теплопроводности;
  3. Специализированные добавки;
  4. Метод твердения материала. При автоклавном способе, как правило, блоки получаются с гораздо лучшим сочетанием обсуждаемых нами показателей, но для домашнего изготовления он недоступен.
Читайте также:  Битум для асфальта: дорожный, жидкий

Видео в этой статье продемонстрирует основные методы производства пенобетона.

Варианты утепления конструкций, возведенных из пенобетона

А вот повысить способность к теплосохранению стены вполне возможно при помощи утепления конструкции. Вариантов может быть очень много, а мы кратко рассмотрим самые популярные утеплители, используемые застройщиками.

Наиболее распространенные материалы для утепления стен из пенобетона:

  • Экологичность изделий;
  • Невысокая масса;
  • Легкость в использовании, отсутствие необходимости привлекать специалистов;
  • Способность к паропроницанию;
  • Долговечность;
  • Приемлемая стоимость продукции;
  • Устойчивость к биологическому воздействию.
  • Гигроскопичность;
  • Огнеопасность;
  • Склонность к деформации.

Также обладает рядом достоинств и недостатков.

Невысокая цена, высокая скорость монтажа, малый вес и влагоустойчивость – весомые плюсы.

Плюсы заключаются в высоких эксплуатационных характеристиках, устойчивости к влаге и негорючести.

Кратко о колодцевой кладке

Отдельно хотелось бы сказать о методе утепления конструкций посредством метода колодцевой кладки. Она используется исключительно при облицовке здания кирпичом.

  • Кирпичная кладка при этом ведется параллельно с основной, а промежуток заполняется сыпучим утеплителем.
  • Чаще всего применяется при этом керамзит, однако могут использоваться и другие материалы, такие как: гранулы полистирола, пеноизол, вермикулит, опилки, щебень, шлак и другие.
  • Те материалы, которые не подвержены биологическому воздействию, применяются как сухая засыпка. А вот, например, опилки или иные органические материалы, используются совместно с вяжущими в виде легкого бетона с наполнителем.

Как итог, теплоизолирующая способность стены значительно возрастает. Из минусов можно выделить то, что процесс работ достаточно трудоемкий, и требует наличия определенных навыков.

В заключение

Теплопроводность пенобетонных блоков – весьма значимый показатель, он отвечает за способность к теплосохранению, а значит, отчасти определяет расходы на утепление и отопление будущего здания. Для малоэтажного строительства пенобетон подходит практически идеально, ведь его прочностные характеристики вполне достаточны для возведения перегородок и стен — при сохранении пониженного коэффициента теплопроводности.

Какой коэффициент теплопроводности у пенобетона

Рисунок — 1 пенобетонные блоки

Каждый стеновой материал отличается структурой, которая влияет на прочность, плотность и энергосбережение, характеризующееся скоростью передачи тепловой энергии. От этого показателя зависит насколько долго будет удерживаться тепло в доме, поэтому при выборе строительного материала в первую очередь следует брать в учет это свойство. Сегодня стены и внутренние перегородки возводятся из пенобетона, теплопроводность которого зависит от пористости структуры и насыщенности воздушными пузырьками.

Виды пенобетона

Легкие пенобетонные блоки подразделяются на три вида:

  • теплоизоляционный (с низкой плотностью, 400 — 500 кг/м.куб), которым характерно наличие большого количества пустот — применяются для создания надежной теплоизоляции стен;
  • конструкционно-теплоизоляционный (со средней плотностью, 600 — 700 кг/м.куб) — обладают хорошей теплостойкостью и несущей способностью;
  • конструкционный (с высокой плотностью, 1100 — 1200 кг/м.куб и малым содержанием пустот) — применяются для возведения несущих стен, но недостаточно удерживают тепло.

Как изготавливают пенобетон читайте в этой статье.

Коэффициент теплопроводности

В зависимости от прочности и плотности пенобетона коэффициент теплопроводности варьирует от 0,1 до 0,38 Вт/м°С. Обозначают коэффициент литерой λ. Чем он выше, тем хуже энергосберегающие свойства имеет материал и если сравнить с другими аналогами, то стена из пенобетонных блоков толщиной в 30 см и показателем 0,18 Вт/м°С удерживает тепло так же, как и стена кирпичная в 132 см или шлакоблочная в 108 см.

Важно! Чем выше показатели теплопроводности пенобетона, тем ниже показатели плотности.

Рисунок 2 — Сравнение толщины стен из разных материалов при одинаковой теплопроводности

На параметры теплопроводности материала влияет размер внутренних пустот. Чем больше оказывается воздушных пузырьков внутри пенобетонного блока, тем выше теплоизолирующие свойства блоков.

На реальную теплопроводность пенобетона влияют точность изготовления блоков и толщина шва при выполнении кладки. Толщина швов между блоками должна быть 2 — 3 мм. Если толщина превышает 10 мм, тогда швы превращаются в мостики холода, что приводит к ухудшению качества материала.

[su_note note_color=»#DCDCDE» radius=»0″ Чтобы достичь необходимого показателя энергосбережения следует правильно рассчитать толщину стен дома. Блоки с высокой плотностью требуют применения дополнительного слоя утеплителя.[/su_note]

В таблице 1 приведены показатели коэффициента теплопроводности марок пенобетона.

Таблица 1 — Коэффициент теплопроводности пенобетона

Вид пенобетонаМарка пенобетона по средней плотностиКоэффициент теплопроводности (ВТ/м°С)
ТеплоизоляционныйD3000,08
D4000,10
D5000,12
Конструкционно — теплоизоляционныйD5000,12
D6000,14
D7000,18
D8000,21
D9000,24
КонструкционныйD10000,29
D11000,34
D12000,38

Блоки D1100 и D1200 плохо удерживают тепло, но имеют хорошие показатели прочности (выдерживают максимальную нагрузку). Блоки D600 и D700 способны выдержать нагрузку плит перекрытий и неплохо сохраняют тепло. Поэтому, чаще всего, их используют при строительстве малоэтажных зданий. Оптимально для строительства стен дома (2-3 этажного) использовать пенобетон D600 марки. Толщина стен в этом случае будет 30-40 см.

Рекомендуем ознакомится в этой публикации с характеристиками пенобетонных блоков.

Перегородки из пенобетонных блоков

Рисунок 3 — монтаж перегородки из пенобетонных блоков

На внутренние перегородки из пенобетона показатель теплопроводности практически не влияет. Но при повышенной пористости структуры улучшаются звукоизоляционные свойства материала, что положительно сказывается на эксплуатационных характеристиках.

Перегородки лучше строить из теплоизоляционного пенобетона используя марки D300, D400 и D500.

Узнать недостатки пенобетона и рассчитать сколько в 1 кубе пеноблоков можно перейдя по ссылкам.

Заключение

Пенобетон делится на три вида:

  • теплоизоляционный (плотность 400-500 кг/м.куб);
  • конструкционно-теплоизоляционный (плотность 600 — 700 кг/м.куб);
  • конструкционный (плотность 1100 — 1200 кг/м.куб).

Теплопроводность пенобетона зависит от прочности и плотности пенобетона. Чем показатель плотности выше тем ниже показатель теплопроводности, а значит дом будет быстрее нагреваться летом и быстрее охлаждаться в мороз. Что бы узнать коэффициент теплопроводности пенобетона нужно воспользоваться таблицей 1.

Коэффициент теплопроводности пенобетонного блока

Пенобетон – это строительный блочный ячеистый материал. Именно благодаря порам, он обладает низким коэффициентом теплопроводности. Получается пористая структура в результате добавления в раствор пенообразующего компонента. От его объема зависит количество ячеек в пенобетоне. Чем их больше, тем меньше он проводит тепло. Низкий коэффициент теплопроводности достигается за счет наличия в ячейках воздуха, а он, в свою очередь, имеет самое меньшее значение теплопередачи.

Что такое теплопроводность?

Эта характеристика показывает, какое количество тепла передает материал за определенное время. Влияет на эту величину плотность пенобетона и влажность.

Теплопроводность различных марок пеноблоков сильно отличается, так как они имеют разную структуру. Изготавливается пенобетон трех видов:

  • конструкционный;
  • теплоизоляционный;
  • конструкционно-теплоизоляционный.

Конструкционные пеноблоки являются самыми плотными и содержат наименьшее количество пор с воздухом. Поэтому они имеют самый высокий коэффициент теплопроводности – 0,29-0,38 Вт/м·К. Такие пеноблоки используются для строительства фундаментов и несущих конструкций. Но так как они довольно-таки сильно проводят тепло, то требуется дополнительная отделка утепляющими материалами. Выпускаются марок Д900-Д1200.

Теплопроводность пенобетона конструкционно-теплоизоляционного типа несколько ниже. Они обладают как хорошей прочностью, так и оптимальным показателем теплопередачи – 0,15-0,29 Вт/м·К. Именно эти пеноблоки чаще всего применяются в частном домостроительстве для возведения несущих стен и перегородок. Производятся марок Д500, Д600, Д700 и Д800.

Теплоизоляционные пеноблоки имеют наилучший коэффициент теплопроводности – 0,09-0,12 Вт/м·К. Но из-за большого количества пустых ячеек, они обладают слабой прочностью, поэтому их не применяют для строительства, а только в качестве теплоизоляции уже отстроенного сооружения. Производятся марок Д300-Д500.

Чтобы не снизить коэффициент теплопроводности блоков пенобетона, для кладки используется не цементно-песчаный раствор как для обычных кирпичей, а специальный клей. Толщина шва не должна быть больше 2-3 мм. Иначе в местах швов образуются мостики холода, и через них будет уходить немалая часть тепла. Таким же образом проводится монтаж газоблоков.

Чтобы кладка была ровной, а швы одинаковыми, следует приобретать качественные пеноблоки с ровными гранями. Такой материал изготавливается известными и крупными производителями. Если проводить кладку из пеноблоков разных размеров и форм, швы не получатся одинаковой толщины. В итоге конструкция будет сильнее терять тепло.

Теплопроводность блоков пенобетона разных марок:

МаркаКоэффициент теплопередачи
Д3500,09
Д4000,10
Д5000,12
Д6000,14
Д7000,18
Д8000,22
Д9000,25
Д10000,29

Пенобетон в сравнении с газобетоном имеет несколько лучшую теплопроводность. Но это относится только к пеноблоку теплоизоляционного типа. Показатели теплообмена газоблока (0,075-0,183 Вт/м·К), конструкционного и конструкционно-теплоизоляционного блоков практически одинаковые.

Средняя теплопередача дерева – 0,15 Вт/м·К. Пенобетон уступает ему лишь немного, а некоторые теплоизоляционные пеноблоки удерживают тепло даже несколько лучше. Коэффициент теплообмена строительного кирпича находится в диапазоне 0,2-0,7 Вт/м·К, что намного хуже, чем у пенобетона.

На способность передавать тепло влияет и окружающая среда, а точнее, процент влажности и температура. Чем больше внутри газоблока и пенобетона влаги, тем сильнее они проводят тепло. Также коэффициент теплообмена увеличивается при понижении температуры.

Как рассчитать толщину стены?

Чтобы узнать, какой толщины строить стены, нужно учесть показатели теплообмена всех материалов. Так, если конструкция будет состоять из кирпича (например, 0,5 Вт/м·К), штукатурки (0,58 Вт/м·К) и пеноблоков (Д800 – 0,22 Вт/м·К), то учитываются все их коэффициенты вместе.

По строительным нормам сопротивление стен теплопередаче должно быть не меньше 3,5 м2·К/Вт. Именно от этого числа отнимаются показатели теплообмена стройматериалов, которые будут использоваться для возведения конструкции, кроме пеноблоков. Чтобы вычислить сопротивление теплопередаче кирпича, нужно его толщину 12 мм (0,12 м) разделить на коэффициент его теплопроводности: 0,12/0,5=0,24. Точно так же для штукатурного слоя в 2 см: 0,02/0,58=0,034.

Теперь эти результаты отнимают от 3,5 м2·К/Вт: 3,5-0,24-0,034=3,226. Чтобы узнать необходимую толщину стен, полученное число умножают на коэффициент теплопроводности блоков пенобетона: 3,226*0,22=0,71. Значит, толщина стены должна быть не меньше 70 см при применении пеноблоков Д800.

Пенобетон не только хорошо удерживает тепло, но и является таким же экологически чистым материалом, как и дерево. Так как для его производства используется цемент, песок, вода и натуральный пенообразующий компонент. В доме, построенном из него, всегда будет комфортный микроклимат.

Оцените статью
Добавить комментарий